
Knowledge Intensive Engineering Framework:
KIEF

(formerly known as SYSFUND)
Manual

Tomiyama Lab.
The University of Tokyo
Masaharu YOSHIOKA

National Center for Science Information systems

January 12, 2000

Contents

1 Introduction 1

1.1 What is the KIEF? . 1

1.2 Architecture . 2

2 Knowledge Representation in the KIEF 5

2.1 KIEFLauncher . 5

2.2 Concept dictionary . 6

2.2.1 Entity . 7

2.2.2 Relation . 8

2.2.3 Physical Phenomenon 9

2.2.4 Attribute . 10

2.2.5 Physical Rule . 11

2.2.6 Construction of Physical Feature 13

2.3 Knowledge about Modelers . 14

3 Design in the KIEF 16

3.1 Using Plugged Modelers . 17

3.2 Functional Design on FBS modeler 18

3.2.1 Function Decomposition 19

3.2.2 Selection of Physical Features 21

3.2.3 Creation of Physical Features 22

3.2.4 Delegation . 23

3.3 Evaluation with Other Modelers 24

3.3.1 Evaluation with Qualitative Reasoning System 24

3.3.2 Evaluation with FBS Modeler 26

A Plugged in Modelers 29

1

A.1 Physical Reasoning System based on Qualitative Process Theory . 29

A.1.1 Representation of Physical Knowledge 29

A.2 FBS Modeler . 33

A.2.1 Representation of Functional Knowledge 33

A.2.2 How to write Function Prototypes 34

2

Chapter 1

Introduction

1.1 What is the KIEF?

KIEF (Knowledge Intensive Engineering Framework) is a tool for supporting var-
ious engineering activity related to the whole life cycle of artifacts; e.g. design,
maintenance, and so on. In this framework, various kind of engineering tools can
be integrated by intensively storing engineering knowledge and representing the
relationship among them.

The KIEF has two major roles. It works as a knowledge base, and it manages
various computational engineering tools by using pluggable metamodel mecha-
nism that allows to plug in existing design object modelers. In this framework,
all design object modelers in SYSFUND (SYStematization tool of FUNctional
knowledge for Design) (e.g. Function Behavior State (FBS) modeler which is a
CAD for conceptual design, qualitative physics based reasoning system) are al-
ready plugged in.

As a knowledge base, the KIEF accumulates concept dictionary which is a ba-
sic definition of concepts for knowledge bases represented in various engineering
tools for management of the relationship among knowledge bases. In addition,
since the KIEF includes all design object modelers in SYSFUND (e.g. Physi-
cal Reasoner based on Qualitative Process Theory [Forbus84], Function Behavior
State (FBS) modeler [Umeda96]), knowledge bases for these modelers accumu-
lates functional knowledge about machines, knowledge about behavior and struc-
ture and so on.

As a CAD for conceptual design, the designer uses FBS modeler for func-
tional design. As a result, a function hierarchy and a causal dependency network
which depicts the basic mechanism, including a topological structure, of the de-
sign object will be constructed. After that, the KIEF system reasons out the pos-
sible physical phenomena occurred on the designed object. From this description
of the designed object, the designer can make various design object model (e.g.,
Physical Reasoner base on Qualitative Process Theory, Physical Reasoner based
on mathematical model, and so on), and evaluate the designed object for verifying
its function.

1

1.2 Architecture

The architecture of the KIEF is shown as Figure 1.1.

provide
building blocks

 Metamodel

Design Object Modelers

 GY - p -

R dv
dt = -kx

....

The pluggable
Metamodel Mechanism

A VLKB of
Engineering Knowledge

provide vocabulary

Concept Base
Definition of concepts

Physical Feature KB
Conceptual models of
mechanisms

Bond Graphs

Differential Equations

Qualitative Equations

representation by
design object models

Model Library

correspondence

AAAAAA
AAA
AAA
AAA
AAA

provide
vocabulary

Knowledge about Modelers
AAAA
AAAA
AA Interface of Modelers

provide
appropriate
model
 fragments

Figure 1.1: System architecture of the KIEF

Right side of Figure 1.1 depicts the three component architecture of the knowl-
edge base system for the KIEF. The middle component, called concept dictionary,
contains physical concepts.

In the concept dictionary, physical concepts are categorized into the following
six types.

� Entity
An entity represents an atomic physical object. Entities include such as me-
chanical parts and electric devices, and are organized in an abstract-concrete
hierarchy. For example, a “worm gear” is a subclass of a “gear.” The hier-
archy allows multiple inheritance.

� Relation
Relations represent relations among entities to denote static structure. They
include relations between physical objects such as “connection” and “on.”
They are also organized in an abstract-concrete hierarchy.

2

� Attribute
An attribute is a concept attached to an entity and takes a value to indicate
the state of the entity, such as “position” and “temperature.” Attributes also
have a description about differential relationships with other attributes (e.g.
“velocity” is a differential of “position”).

� Physical rule
A physical rule represents relationships among attributes such as “Kirchhoff
low.” A physical rule represents relationships among attributes.

� Physical phenomenon
A physical phenomenon designates physical laws or rules that govern be-
haviors. A physical phenomenon is defined by the following slots.

– Name of the phenomenon.

– Super (or abstract) physical phenomena as described in Entity.

– Related physical phenomena, entities, and attributes with respect to
the phenomenon.

– Physical rules govern the phenomenon.

Figure 1.2 is an example description about gear transmission. The upper layer
contains a Physical Feature, such as a worm gear pair, which represents a combi-
nation of a set of entities and relations among the entities, and physical phenom-
ena causally related to the entities. Physical features are used as building blocks
for a physical model on this system. Physical concepts in the concept dictionary
provide a vocabulary to build the physical feature.

Model fragments for building a model with various model representation are
stored in the model library with the relationship to the concept stored in the
concept dictionary.

Left side of Figure 1.1 depicts the pluggable metamodel mechanism which has
a capability to use existing design object modelers (including commercial CAE
tool such as solid modeler, FEM and so on). The pluggable metamodel system
maintains the consistency by using metamodel that is a model which represents
the relationships among concepts used in various design object models.

In the pluggable metamodel mechanism, a metamodel is constructed by using
physical features as building blocks. For plugging-in new design object modelers,
Knowledge about Modelers should be defined by using the vocabulary in the
concept dictionary. Model library is used as model fragments while exporting
the information in metamodel to the design object modelers through Interface of
Modelers.

3

Class name: RotationalTransmission

Abstract class: Transmission

Prerequisites:
 Physical Objects: object1, object2
 Attributes: AngularVelocity(object1), Torque(object1),

 AngularVelocity(object2), ...
 PhysicalProperties: Round(object1), Round (object2

Physical Laws:
ProportionalRelation(AngularVelocity(object1), AngularVelocity(object2)),
...

Physical Phenomena

Physical Features

Model Libraries

Qualitative Model

ProportionalRelation(x.y)

x increases when y increases
 decreases decreases

Kinematic Equation
ProportionalRelation(x.y)

y = r * x

Bond Graph Model
ProportionalRelation(x.y)

Transformer

WormGear Gear

Meshed

Rotation

Rotational Transmission

Rotation

Pulley Belt

Rotation

Rotational Transmission

Pulley

Strapped

Rotation

Physical concepts in Concept Base

Figure 1.2: Describing the Knowledge about Gear Transmission in the KIEF

4

Chapter 2

Knowledge Representation in the
KIEF

The KIEF uses different type of knowledge in several ways. There are five types
of knowledge in the KIEF system as follows.

1. Concept dictionary

2. Physical feature

3. Knowledge about modelers

4. Model library

5. Knowledge stored in plugged-in design object modelers

At first, we explain the usage of KIEFLauncher that is used for execute knowl-
edge definition tools and reasoning systems. After that, we explain the represen-
tation of concept dictionary, physical feature and knowledge about modelers. In
addition, we also explain the guideline to make model library. Knowledge stored
in plugged-in design object modelers are described in Appendix A.

2.1 KIEFLauncher

KIEFLauncher is a launcher for executing knowledge definition tools and reason-
ing systems in the KIEF (Figure 2.1). The KIEFLauncher is initially opened when
you install a KIEF system. However, if you close this launcher please evaluate
“KIEFLauncher open” in Workspace to open new launcher.

The KIEFLauncher consists from two parts. One is buttons for select tool
types that are used for changing the buttons at the upper part of the launcher. The
other is buttons for start up tools that are used for start up tools at the upper part
of the launcher. To start tools in the KIEF, first you select one button from the
category buttons and select one button from the tool execution buttons.

In following documents, we describe the usage of the launcher for starting up
tools as “Button for select tool type” -> “Button for start up tools.”

5

Buttons for Select Tool Types

Buttons for Start up Tools

Figure 2.1: The KIEF Launcher

2.2 Concept dictionary

There are following five type of concepts in concept dictionary.

� Entity

� Relation

� Attribute

� Physical phenomenon

� Physical rule

All these concepts except physical rule are defined in VLKBBrowser (Figure
2.2) by using predicate logic. To start this VLKBBrowser, use the KIEFLauncher
by “Prototype” -> “ConceptBase.”

There are three steps to define concepts.

1. Select a category from the “Category” list.

2. Define concepts in “Concept Definition Editor” by using a template. The
template is shown by selecting a category and not selecting already defined
concept from “Name of the Concept”.

3. Accept concepts by using middle button menu “accept.”

In this section, we explain the knowledge description about these concepts.

6

Category

Name of the Concept

Physical Feature
List which used
selected concept

Concept Definition Editor
(templates is shown when
concept is not selected)

Figure 2.2: VLKB Browser

2.2.1 Entity

An entity represents an atomic physical object. An entity has 2 slots.

Entity Write the name of this concept of a entity.

Supers Write super entities to make hierarchy.

A frame of an entity (The reserved words and letters are shown by double
quotations.)

Entity: <entityNamePredicate>(?e)
<entityNamePredicate> ::= a symbol which is unique in the category

Supers: <superEntityPredicate>(?e)<superEntity>(?e) ...
<superEntity>::= a symbol define in the other frame of Entity

Example

Entity: Gear(?e)

Supers: MechanicalParts(?e),Mass(?e)

7

2.2.2 Relation

A relation represents relations among entities to denote static structure. A relation
has 3 slots.

Relation Write the name of this concept of a relation.

Supers Write super relations to make hierarchy.

HasRelations Define how to relate the entities using a predicate. The order of
the entities which is the arguments of the predicate should be considered.

A frame of a relation (The reserved words and letters are shown by double
quotations.)

Relation: <relationNamePredicate>(?r)
<relationNamePredicate> ::= a symbol which is unique in the category

Supers: <superRelationPredicate>(?r) <superRelationPredicate>(?r)
...

<superRelationPredicate>::= a symbol define in the other frame of Relation

HasRelations: <relation>,<relation> ...
<relation> ::= HasRelation(?r,<localEntityName> <localEntityName> ...)

Example

Relation: Meshed(?r)

Supers: Relation(?r)

HasRelations: HasRelation(?r, ?gear1, ?gear2), HasRelation(?r, ?gear2, ?gear1)

8

2.2.3 Physical Phenomenon

A physical phenomenon designates physical laws or rules that govern behaviors.
A physical phenomenon has 3 slots.

PhysicalPhenomenonWrite the name of this concept of a physical phenomenon.

Supers Write super physical phenomena to make hierarchy.

Attributes Write related attributes to the phenomenon.

Entities Write related entities to the phenomenon.

PhysicalRules Write physical rules that governs the phenomenon.

Statements Define how to relate the entities and attributes by a predicate. There
are 2 types of predicates for describing the relation. The order of the argu-
ments of the predicate should be considered.

1. OccurTo relate the phenomenon with the entities.

2. HasAttribute relate the attribute with an entity or entities.

A frame of a physical phenomenon(The reserved words and letters are
shown by double quotations.)

PhysicalPhenomenon: <phenomenonNamePredicate>(?p)
<phenomenonNamePredicate> ::= a symbol which is unique in the

category

Supers: <superPhenomenonPredicate>(?p),
<superPhenomenonPredicate>(?r) ...

<superPhenomenonPredicate>::= a symbol define in the other frame
of PhysicalPhenomenon.

Attributes: <attributePredicate>(<attributeTerm 1 >),
<attributePredicate>(<attributeTerm 2 >) ...

<attributePredicate>::= a symbol define in the frame of Attribute.
<attributeTermi >::= a symbol which is unique in this
frame.

Entities: <entityPredicate>(<entityTerm1 >),
<entityPredicate>(<entityTerm2 >) ...

<entityPredicate>::= a symbol define in the frame of Entity. <entityTermi >::=
a symbol which is unique in this frame.

PhysicalRules: <physicalRulePredicate>(<attributeTerm i > ...)
<physicalRulePredicate>(<attributeTerm j > ...) ...

<physicalRulePredicate>::= a symbol define in the frame of Physi-
calRule.

9

Statements: OccurTo (?p,<entityTerm1 >) ...,
HasAttribute(<attributeTerm i >, <entityTerm j >)
...

<attributeTermi;j > :: = a symbol for attribute define in this frame.

Example

PhysicalPhenomenon: LinearMotion(?p)

Supers: Motion(?r)

Attributes: Force(?f), Mass(?m), Position(?pos), Acceleration(?acc),
Velocity(?vel)

Entities: Mass(?object)

PhysicalRules: SecondLawOfNewtonLaws(?f, ?m, ?acc)

Statements: OccurTo(?p, ?object), HasAttribute(?f, ?object), HasAt-
tribute(?m, ?object), HasAttribute(?pos, ?object), HasAt-
tribute(?acc, ?object), HasAttribute(?vel, ?object)

2.2.4 Attribute

An attribute is a concept attached to an entity and takes a value to indicate the
state of the entity. Attribute has ? slots.

Attribute Write the name of this concept of an attribute.

Supers Write super attribute to make hierarchy.

ValueType Write data type of the attribute.

AccessingMethodWrite name of the method to extract another attribute data
from the attribute. These methods are implemented in the interface between
metamodel mechanism and external modelers.

A frame of a physical phenomenon(The reserved words and letters are
shown by double quotations.)

Attribute: <attributeNamePredicate>(?a)
<attributeNamePredicate> ::= a symbol which is unique in the cat-

egory

Supers: <superAttributePredicate>(?a),
<superAttributePredicate>(?a) ...

<superAttributePredicate>::= a symbol define in the other frame of
Attribute.

10

ValueType:

AccessingMethod: <attributePredicate>(<attributeTerm 1 >),
AccessingMethod(<attributeTerm 1 >,<methodNameTerm1 >,)
...

<attributePredicate>::= a symbol define in the frame of Attribute.
<attributeTermi >::= a symbol which is unique in this
frame. <methodNameTermi >::= a symbol which is
unique in unique in the category.

Example

Attribute:

Supers: Motion(?r)

ValueType:

Entities: Mass(?object)

PhysicalRules: SecondLawOfNewtonLaws(?f, ?m, ?acc)

Statements: OccurTo(?p, ?object), HasAttribute(?f, ?object), HasAt-
tribute(?m, ?object), HasAttribute(?pos, ?object), HasAt-
tribute(?acc, ?object), HasAttribute(?vel, ?object)

2.2.5 Physical Rule

A physical rule represents relationships among attributes. Physical rules are de-
fined in Physical Rule Browser (see Figure 2.3). The user can open a Physical Rule
Browser with the KIEFLauncher by “Prototype” -> “Physical Rule.” A physical
rule has 4 slots. The slots “Name” and “Attributes” are necessary.

Name Write the name of this physical rule.

Comments Comments on the physical rule

Attributes Write attributes on which this physical rule constrains.

Expression Write constraint of physical rule by mathematical expression.

A frame of a physical rule
(The reserved words and letters are shown by double quotations.)

Name: <ruleName>
<ruleName> ::= a symbol which is unique in the knowledge base (usually the

first letter is in capitals)

Comments: comment about the knowledge.

11

Attributes: <attributeSet> <attributeSet>
...

<attributeSet> ::=<localAttributeName><arrow><AttributeName><arrow> ::= “ ”
<localEntityName> ::= a symbol for an instance of an attribute used locally

in this frame.

Expression: Mathematical expression of the phenomenon. <localAttributeName>
is used for describe expression.

Example

Name: SecondLawOfNewtonsLaw

Comments: KenematicMotion

Attributes: f Force
m Mass
a Acceleration

Expression: Sigma(f)=m*a

Figure 2.3: Physical Rule Browser

12

2.2.6 Construction of Physical Feature

Physical feature is a set of physical phenomena and structures for invoking the
phenomena. It is used as a building block of metamodel and as knowledge for
checking the occurrence of physical phenomena. Physical features can be con-
structed using the concepts in a concept dictionary. The KIEF provides the user
an editor called Physical Feature Editor (Figure 2.4).

1. Instantiate nodes for the physical feature.
The user instantiate nodes for physical phenomena, entities, relations, at-
tributes for the physical feature by using the command “addPhysicalPhe-
nomenon”, “addEntity” and so on from the “add” submenu.

2. Connect nodes to set the relationship among concepts.
There are four type of connections.

� Relation - Entity connection
Connect relation node and entity node to build up the structure for
invoking the phenomena. The user should specify local names from
the conceptual definition of relation.

� Physical Phenomenon - Entity connection
Connect physical phenomenon node and entity node to specify where
the phenomenon occurs. The user should specify local names from the
conceptual definition of physical phenomenon.

� Physical Phenomenon - Physical Phenomenon connection
Connect physical phenomenon node and physical phenomenon node
to represent the causal dependency.

� Attribute - Physical Phenomenon connection
Connect attribute node and physical phenomenon node to represent
the condition for invoking the phenomenon.

The user connects the nodes by following manner.

(a) Select “from node” to connect.

(b) Select with shift button pressing “to node” to connect.

(c) Select command “connect nodes.’ from the menu.

(d) If the user should select local names, the user selects one local name
from the selection menu.

3. Set derivation flag for each physical phenomenon.
Physical Feature is used for checking the occurrence for some of the phys-
ical phenomena in the physical feature. Setting a derivation flag of a phe-
nomenon node to true means, the physical feature is used for checking the
occurrence of a phenomenon. On the contrary, setting the flag to false means
the phenomenon is used as a condition for invoking the physical feature.

13

Derivation flag can flip by using command “flip derivation flag”. Line width
of rectangle represents this flag. Wider line width means true, and narrower
line means false.

4. Accept the physical feature.
Push “Accept” button, and set the names by using the dialog.

There are some other commands for constructing the physical feature more
flexibly. Please refer to the reference manual.

Figure 2.4: Physical Feature Editor

2.3 Knowledge about Modelers

Knowledge about modelers represents characteristic features of the modelers.
Knowledge about modelers are defined in Modeler Definer (see Figure 2.5). The
user can open a Modeler Definer with the KIEFLauncher by “Metamodel” � >

“Modeler Definer.” Knowledge about modelers has ? slots.

Name Name of the modeler.

Related ConceptsConcepts related to concepts used to build the model in the
modeler. These concepts are used to filter out the unrelated concepts from
design object model while making initial qualitative model for the modeler.

14

Usable conceptsConcepts used to build the modeler. These concepts are used to
abstract the metamodel to a model in the modeler.

Available concepts Concepts computed from the modeler. Available concepts is
used to find out the appropriate modeler for computing the value of attribute.

Attribute translation method Method for calculating value of the attributes in
the modeler from the value of other attributes in the metamodel mecha-
nism. Required attribute values are represented with the graph that repre-
sents relationship between entities, relations, or physical phenomena which
the attributes belongs to.

The example of Figure 2.5 shows that attribute solid is required to calculate
the attribute of beam.

Figure 2.5: Modeler Knowledge Browser

15

Chapter 3

Design in the KIEF

Design in the KIEF is conducted by using the pluggable metamodel mechanism.
For starting a design from the functional specification, the design process has the
following four steps.

1. Constructing FBS model.
FBS modeler takes required functions as inputs. FBS modeler decomposes
the required functions into subfunctions in order to detail it using functional
knowledge. As a result, a functional hierarchy is constructed.
Each function located at the bottom of the function hierarchy should have
physical features, which realize the function, or behaviors, which are rep-
resented as state transitions, in its function prototype knowledge. The de-
signer selects or creates a physical feature for each bottom functions. For
selection of physical features, the designer uses the knowledge in the func-
tion prototypes. Instead of selection, the designer can create a new physical
feature which can cause the behaviors written in the function prototype us-
ing QPAS. After constructing a FBS model, export model to the pluggable
metamodel mechanism.

2. Computing a metamodel.
The metamodel mechanism finds out possible physical phenomena that may
occur on the design object with qualitative reasoning.

3. Generating an external model.
The designer generates an aspect model for evaluation by an external mod-
eler. First, the metamodel mechanism selects related concepts to the aspect
and relations among the concepts from the metamodel. By doing so, a con-
ceptual model for generating an external model is constructed. After this,
the metamodel mechanism translates the conceptual model to an external
model by using model fragments and attribute data represented in the meta-
model.

4. Evaluating the external model.
Finally, the designer evaluates the generated aspect model with the external
modeler.

The last 2 steps reiterate for evaluating from various aspects.

16

3.1 Using Plugged Modelers

First, the designer opens the Metamodel Interface by selecting Metamodel in the
lower part of launcher and selecting Metamodel in it. From this interface, plugged
modelers can be used. There are following 4 steps to use a plugged modeler.

1. Make aspect modeler.
The designer selects one modeler name from the available modeler list and
selects make new aspect modelfrom the menu. Then right part of window
changes to aspect modeler for selected modeler.

2. Make aspect model.

(a) Filtering related concepts from metamodel
The pluggable metamodel mechanism finds out related concepts from
a metamodel. For example, consider the design of a robot arm. If
the designer want to evaluate the distortion of arm as a beam model,
the pluggable metamodel mechanism collects the concept like, force,
entity, connection from a metamodel. In other words, non related con-
cepts like electric flow between motor and battery are filtered out.

(b) Determine abstraction level for a design object modeler (Figure 3.1-
(a)).
The metamodel mechanism determines most appropriate abstraction
level for the selected modeler based on the knowledge about design
object modeler. The metamodel mechanism suggests concepts in-
cluded in the determined abstraction level and needed for the selected
modeler, and the designer has to give abstract descriptions of the de-
sign object using these concepts. In the example of making beam
model of arm, the metamodel mechanism suggests to describe the arm
only using concepts such as beam, load, support, and bending. Then
the designer abstracts the arm concept in the domain of geometry as a
beam. This abstraction is computationally done by unification that is
an operation to create a new instance that delegates the two concepts
of shape “arm” and physical feature “beam.”

(c) Determine simplification level for the selected modeler (Figure 3.1-
(b)).
The designer determines appropriate simplification level for the se-
lected modeler. The designer selects physical phenomena that should
be considered in the selected aspect model. In other words, some phys-
ical phenomena and some entities might be neglected. For instance,
the designer can say that any bending is considered while vibration is
not of interest in the arm design.

3. Open the plugged modeler.
By selecting open button, the selected plugged modeler opens. After that
the designer export information of the metamodel to the plugged modeler

17

by using export menu button. Then data exchange among aspect models are
conducted (Figure 3.1-(c)). Suppose in the example of arm design, a bend-
ing aspect model is generated. Since aspect models often require numerical
information, the metamodel mechanism requests the designer to specify an
appropriate aspect model to feed the required numerical information. For
instance, since the generated bending aspect model needs dimensions of
the beam, the designer specifies the solid modeler as a source to provide
geometric information about the arm. Once this information is given, the
metamodel mechanism can maintain consistently the relationship between
these two models.

F

A
A F

A
Af

length of beam
= 100

(a) abstraction

(b) simplification

(c) data exchange

Figure 3.1: Modeling Process

4. Use the plugged modeler.
After generating the model, the designer operates the model and gener-
ates information about design object. After completing the operation on
the model, the designer propagate the result to the pluggable metamodel
mechanism by using propagatemenu button in the aspect modeler.

3.2 Functional Design on FBS modeler

At beginning of the design process, designer use the FBS modeler to do functional
design. To open the FBS modeler, designer make new aspect model for the FBS
modeler by following the step described in Section 3.1.

18

3.2.1 Function Decomposition

Function decomposition is a process to build a function hierarchy from the top
functions given by the designer. The knowledge of developing methods in func-
tion prototypes is used by FBS Modeler to assist the designer.

And then, the designer inputs one or more needed function as shown in Fig-
ure 3.2. In this figure, the large window which includes Function Layer and
Behavior Layer is the main workspace for constructing an FBS model, the Func-
tion Prototypes window depicts a list of the function prototypes, and the Features
for This Function depicts a list of the physical features connected to a selected
function. Here, the designer instantiates the needed function “move (table)” by
selecting the function prototype and choosing the menu item instantiate in the
Function Prototypeswindow.

Figure 3.2: Selection of Needed Function

Then, the designer constructs a function hierarchy by decomposing the needed
function by using appropriate developing methods defined in the function proto-
types (see Figure 3.3). This is done by clicking the target function node for devel-
oping and choosing the menu item function/develop [D]. Here, the black lines,
such as the relation between “move” and “rotate,” represent super-sub relations in
the function hierarchy. Of course, you can construct the function hierarchy with-
out using the developing methods by instantiating some function prototypes and
connecting them by choosing the menu item node/connect [C].

As the second step, from the bottom functions of this function hierarchy, phys-
ical features will be derived, and by combining these physical features a primary
model for the design object that realize the target function will be constructed.
There are two ways to get physical features for each bottom functions. One is to

19

Figure 3.3: Construction of Function Hierarchy

directly select some physical features written in the function prototypes as knowl-
edge, and the other is to create physical features from the behaviors which may be
also written in the function prototypes.

20

3.2.2 Selection of Physical Features

The designer can select physical features for realizing the function hierarchy. Fig-
ure 3.4 shows the result of this selection. Namely, the designer chooses one of
the functions in the lowest level of the function hierarchy1, one of the physical
features shown in the Features for This Function window, and the menu item
asRealizeFeature in this window. In Figure 3.4, selected physical features are
derived and decomposed into the concept dictionary elements (entities, relations,
and physical phenomena) in the Behavior Layer. Thin arrows among the con-
cept dictionary elements depict the physical dependencies, and dotted thick lines
depict which concept dictionary element derived from which function.

Figure 3.4: Selection of Physical Features

1In other words, the functions which do not have any subfunctions can be connected directly
to physical features or behaviors.

21

3.2.3 Creation of Physical Features

Instead of selecting physical features directly, the designer can create some phys-
ical features from the behaviors attached to the function prototypes so that the
designer can construct the design object model more flexibly.

First, the designer chooses one of the behaviors shown in Behaviors for This
Function window, and open QPAS interface (Figure 3.5). Secondly, the designer
selects the suggestions of physical phenomena which entail the desired behavior
from “suggestions” window in QPAS interface. The physical feature editor will
open and the designer can create new physical features under the assistance of the
editor as explained in section 2.2.6.

If this method is used, “modes and conditions” which will be explained after-
ward are automatically set.

Figure 3.5: QPAS

22

3.2.4 Delegation

Since the physical features generated in the previous step are independent with
each other, the designer should construct a consistent design object model, which
is called as a primary model in the metamodel system. This is done by identifying
same entities included in more than one physical feature. This manipulation is
called delegation.

Delegation is the method to make an instance of entity which has more than
two views. In a physical feature, each of entities has a certain view which de-
pends on the physical feature. Therefore, when the designer combines several
physical features, there may be some entities which are identical but described
from different views. In the FBS modeler, this is done by delegation. For exam-
ple, since “Shaft” and “BallScrew” in Figure 3.4 should be identical, the designer
chooses these views, by clicking them with pushing left-shift key, and the menu
item node/delegate [G] (see Figure 3.6).

Figure 3.6: Example of Delegation

23

3.3 Evaluation with Other Modelers

As a result of the previous steps, a function hierarchy and a primary model of the
design object are constructed. Since it can be physically inconsistent, this must be
checked. For checking physical consistency, behavior simulation can be executed
by using other modelers. To use other modelers, the designer propagates the FBS
model to the pluggable metamodel mechanism by pushing export button in the
aspect modeler interface.

After propagating the FBS model, the metamodel mechanism reasons out pos-
sible physical phenomena occurred on the design object by using physical feature
knowledge base by selecting metamodelbutton at lower level and selecting phys-
ical feature reasoningbutton.

3.3.1 Evaluation with Qualitative Reasoning System

1. Make new aspect model for Qualitative Reasoning system. Make aspect
model by following the step described in Section 3.1.

2. Export model from the metamodel mechanism
Export metamodel to Qualitative Reasoning system by Export button. This
method creates parameter network model by applying model library for
Qualitative Reasoning system.

3. Accept parameter network model
The designer accepts parameter network model by Accept button in Qual-
itative Reasoning system. At that time, parameters which have no relation
with other parameters are neglected. If he/she does not satisfy the exported
model, he/she can modify the parameter network manually.

4. Modify landmark of each parameter
He/she opens the landmark modeler, by pushing Q spacebutton and check
the setting of parameter space by using this modeler. If he/she does not
satisfy the parameter space, he/she can modify the parameter space.

5. Behavior simulation
To execute behavior simulation, he/she constructs ATMS model for the de-
sign object by pushing Interpretation button. An envisioner opens and the
designer can run behavior reasoning called envisioning. Figure 3.7 shows
envisioning.

6. Propagate result to the metamodel mechanism

24

Figure 3.7: Envisioning

25

3.3.2 Evaluation with FBS Modeler

The designer can evaluate the constructed FBS model by comparing it with the
result of simulation by exporting the result from the metamodel by using Aspect
Modeler.

Figure 3.8: Conditions

To evaluate the result of the qualitative reasoning system, the designer should
describe the conditions which describes a function is considered to be realized.
These conditions can be described in any function nodes. In the example, since
the needed function “move (table)” can be considered to be realized when the
position of the table moves from its initial position, the designer opens the Con-
dition window by choosing the target function node “move” and the menu item
function/conditions [C] and writes “(Table positionX) > start.” This expression
should be “(entityName parameterName) * parameterValue)” (* should be >, <,
or =) and the user can write more than one such expressions in a condition win-
dow (they are parsed as and conditions).

By choosing the menu item behavior reasoning/check consistency, the system
indicates the following information (see Figure 3.9);

Unrealizable physical phenomena: If physical phenomena described by the de-
signer do not occur in the simulated result, some conditions should be inad-
equate. They are depicted as black rectangular nodes.

Side-Effects: Physical phenomena that are not expected to occur in the simu-
lation may cause side-effects that the designer did not notice. These are
added physical phenomenashown as hatched rectangular nodes.

26

Unrealizable functions: If functions have unrealizable views2 in their F-B re-
lationships, unrealizable subfunctions, or their conditions described above
are not satisfied in the simulated network, they will not be realized. They
are depicted as black oval nodes. Moreover, by choosing an unrealizable
function and the menu item function/reason, the designer can know why
the function is unrealizable in the Reasonwindow.

Figure 3.9: Example of Simulation Result

Unless satisfied with the result of evaluation, the designer repeatedly refines
the function hierarchy and/or the view network. As a result, the FBS Modeler
outputs the basic structure of the design object.

2Precisely speaking, even if a function has some unrealizable physical phenomena, a func-
tion are considered to be realizable as far as subclasses of unrealizable physical phenomena are
occurred.

27

Bibliography

[Forbus84] K. Forbus: Qualitative Process Theory, Artificial Intelligence,
Vol. 24, No. 3, pp.85–168 (1984).

[Ishii95] M. Ishii, T. Sekiya, and T. Tomiyama: A Very Large-scale Knowl-
edge Base for the Knowledge Intensive Engineering Framework, In
KB&KS’95, the Second International Conference on Building and
Sharing of Very Large-Scale Knowledge Bases (1995).

[Umeda96] Y. Umeda, M. Ishii, M. Yoshioka, M. Yoshioka, and T. Tomiyama:
Supporting Conceptual Design Based on the Function-Behavior-
State Modeler, Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing (AIEDAM), Vol. 10, No. 4, pp.275–
288(September 1996).

28

Appendix A

Plugged in Modelers

A.1 Physical Reasoning System based on Qualita-
tive Process Theory

A.1.1 Representation of Physical Knowledge

In the KIEF, structures of design objects and physical phenomena which occur on
the structures are described in extended QPT framework and stored in Behavior
Structure Knowledge Base. This knowledge of behavior and structure is used in
two ways. One way is to reason out the behavior of the design object based on its
structure by Qualitative Reasoning System. The other is to support the designer
building the structure, in QPAS, in the synthetic phase of design.

Qualitative Process Theory

Qualitative Process Theory(“QPT”) provides a framework to make models of
physical systems and reasons out transitions of their states qualitatively. The no-
tion “qualitative” is often explained by comparing the differences between con-
ventional physics and “qualitative physics.”

One difference is the value space of parameters which is the fundamental rep-
resentation of the state of a physical system. In conventional physics, parameters
have numeric values, but in qualitative physics parameters have qualitative val-
ues which consists of landmarks and interspaces. For example, let us think about
temperature of water in a kettle and assume that we turn on the gas range. To
describe the model of this physical system, QPT regards temperature of water as
a ordered sequence of symbols shown in Figure A.1, each of which represents a
certain state of water.

Another characteristic of QPT is that it explicitly describes causality between
states of the physical system and physical phenomena which can occur on the
system and may change its state. These descriptions of changes are used to reason
transitions of states. For example, if gas is burning and temperature of the water
is under the boiling point, then a phenomenon, “Heating”, will occur and increase
the temperature. When the temperature reaches to the boiling point, “Boiling”
appears and, say, starts to decrease the amount of water. In this way, QPT can

29

melting point boiling point

landmark interspace

highlow

Figure A.1: Temperature of Water

model dynamical changes of phenomena.

Components of QPT models

A model in the framework of QPT consists of three kinds of conceptual compo-
nents, which are;

� entities,

� relations, and

� physical phenomena.

These components are the elements of the qualitative model of a design object
which is represented and reasoned by Metamodel System.

� An entity represents a physical existence, such as a gear, a spring, and a
shaft. In the knowledge base, entities used for engineering design are collected
and organized in the general-specialized hierarchy, e.g. gear–worm gear. The
hierarchy has multiple general-specialized relationships, so that objects can be
categorized in more than one way.

� A relation represents structural relationships among entities such as “on”,
“above”, “support”, and “connection”. Relations are used to distinguish instances
of the same entity class. For instance, it can be reasoned out that an electric current
can be sent only to the cable “connected” to a battery, but not to the other cable
which doesn’t have any connections..

� A physical phenomenon is a key concept of causality recognized as mech-
anism of machinery. Therefore, in the extended QPT, a description of a physi-
cal phenomenon contains the conditions for the occurrence of this phenomenon
and the effects caused by it. Physical phenomena are also organized in multiple
general-specialized hierarchy.

In a QPT model, entities are connected by relations, and this network repre-
sents the topological structure of the physical system. A physical phenomenon is
causally connected to entities and other physical phenomena. This shows that the
physical phenomenon occurs on the entities, or it depends on the other physical
phenomena connected.

30

AA
AA

physical phenomenon

entity relation

Structure

Figure A.2: An Extended QPT Model

An image of an extended QPT model is represented as Figure A.2.

Physical Feature

When knowledge about physical behavior used in conceptual design is collected,
physical features will be useful basic units. A physical feature can be considered
as useful parts of machines including the description of its behavior. Figure A.3
shows some examples.

lift thermal expansion ball screw

N S

magnetic force pulley heat exchange transformation

gear pair

F1
F0

F2

wedge

F0F1

pressure

I
H

coil

bending

Figure A.3: Examples of Physical Features

A physical feature is represented by an extended QPT, a network of entities,
relations, and physical phenomena as shown in Figure A.4. Physical Features will
be used as model fragments combined to make a large model of the design object.

Parameters

Parameters are attributes of entities. They play an important role in representation
of behavior. A set of values of the parameters represents the state of the physical

31

physical phenomenon

entity

relation

Structure

common entity

Physical Feauture Physical Feauture

Figure A.4: Representation of Physical Feature

system at a certain point of time. The transitions of state show how the physical
system works, and the sequences of states are the behavior of the physical system.

The parameters used in the physical systems are defined within knowledge
frames of physical phenomena accumulated in physical knowledge base. In the
frames, pairs of an entity and a parameter are described and the qualitative values
that the parameters can take are attached. It is an important point that definitions
of parameters are not written in the knowledge frames of entities. Rather, they are
written in the frames of physical phenomena. However, in the QPT model, the
instances of entities have the parameters.

There are two types of parameters attached to entities. One of the parameters
is a quantity parameter, such as angular velocity of a gear. A quantity parameter
has a qualitative value space consisting of landmarks and their interspaces. A
quantity parameter may have a looped value space, e.g. angular displacement of a
shaft. The other is a state parameter that symbolically describes the characteristic
conditions of the entity, such as “on” or “off” for a switch. Operations to a device
are represented as changes in the state parameters of the device. For example, a
commutator of a motor switching electric current has a state parameter that shows
the electric current passing through the coil, and by changing this state parameter
adequately the motor rotates.

32

A.2 FBS Modeler

A.2.1 Representation of Functional Knowledge

Functions in FBS Modeler represent how to uses behaviors. Therefore, functional
knowledge is collected from the teleological point of views.

FBS Modeler is the tool to collect functional knowledge and to assist the de-
signer in functional design. For constructing the knowledge base of functions, the
user should represent each prototype of a function in the form shown in Figure
A.5. This is called a function prototype.

Figure A.5: Example of Function Prototype

A function prototype consists of slots as follows:

� a prototype name,

� developing methods,

� physical features, and

� behaviors.

A prototype name of a function is in the form of “verb (objective1) (objec-
tive2).” For example, “rotate(propeller)” are written as a name.

Developing methods describes a list of networks of subfunctions for decom-
posing this function. The connection among the target function and subfunctions
means that the target function is realized if all the subfunctions are realized. Using
this knowledge, a function is decomposed repeatedly, and a functional hierarchy
is composed as the result of functional design.

33

Physical features which physically realize the target function are written in the
function prototype. The physical features should be constructed in advance based
on the extended QPT framework using Physical Feature Editor.

Behaviors are the description of state transitions which are the concrete in-
terpretations of functions. These behaviors are represented as sequences of pa-
rameter values . For example, a function ’Rotate a shaft’ is interpreted as below
(Figure A.6. The FBS Modeler provides a table type interface to define the be-
haviors, called FBS Behavior Browser.

Figure A.6: Example of State Transitions

A.2.2 How to write Function Prototypes

Function Prototype Editor is used to edit function prototypes. There is a list of
function prototypes in the right window.

To create a new function prototype, write the function name at the top-left
window and select “accept” from the menu in that window. To edit a function
prototype already created, select the function prototypes in the right window and
select “setAsTarget” from the menu in that window.

Adding Developing Methods

The developing methods are created in the middle window named “developing
network.”

First select subfunctions in the right window and select “instantiate” from the
menu in the right window. The node of the subfuntion will come up. Although
the node is not connected apparently, the system knows that they are connected.

The node created shows only the verb part so that the objective (noun part)
should be created by “generate obj.” If more than two verbs have a common

34

objective , click the verb node created and then the objective node, then select
“connect F-O” from the menu in the middle window to connect the nodes.

If the user apparently wants to describe the temporal order of the subfunctions,
click the verb nodes of the subfunctions and use the command “add TimeDepen-
dentArc” from the menu in the middle window.

Adding Physical Features

In My Features window of the Function Prototype Editor, select “add” from the
menu to add the physical feature that realize this function.

Adding Behaviors

To create a behavior for this function, select “edit behavior” from the menu in the
My Behaviors window. FBS Behavior Browser will open (Figure A.7).

Figure A.7: Behavior Browser

In this browser, the user should first select the entities, and then the parameters
in order to describe state transitions. Selecting “define entity” from the menu in
entities window, entities are derived from the knowledge base. After clicking one
of the entities, select “define parameters” from the menu in parameters window.
A list of parameters which can be applied to the entity comes up.

In the next step, the user should make state transitions represented as a ma-
trix table in state transitions window. A row of the parameter is created through
the previous step. The user creates columns by selecting “add column” from the
menu of the window. These columns correspond to points of time. To put the
value to each elements of the matrix, click the elements and select “landmark” or
“interspace” from the menu. A list of landmarks or interspaces comes up. Select
one of the values.

After all the elements are filled and the table is completed, click the button
labeled “accept”, then the table will be accepted. If there are parameters which
have “cyclic” values, the behavior browser asks the user about the direction of
changes in some time intervals.

35

